Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Z)-2,5-Dimethyl-3,4-diphenylhex-3-ene-2.5-diol

Shu-Hong Li^a and Cai-Hong Xu^{b*}

^aSchool of Chemical and Environmental Engineering, Beijing Technology and Business University, Beijing 100037, People's Republic of China, and ^bLaboratory of Advanced Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China Correspondence e-mail: caihong@iccas.ac.cn

Received 26 April 2007; accepted 28 August 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.111; data-to-parameter ratio = 14.4.

The title molecule, $C_{20}H_{24}O_2$, shows a Z configuration with respect to the C=C double bond. The crystal structure is stabilized by intra- and intermolecular O-H···O hydrogen bonds.

Related literature

For related literature, see: Yamaguchi et al. (2003).

Experimental

Crystal data C20H24O2 $M_r = 296.39$

Monoclinic, $P2_1/c$ a = 12.364 (3) Å

b = 16.826 (4) Å c = 8.770 (2) Å $\beta = 108.682 \ (5)^{\circ}$ V = 1728.4 (7) Å³ Z = 4

Data collection

Bruker SMART 1000 CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.979, \ T_{\max} = 0.986$

Refinement

 $\begin{array}{l} R[F^2 > 2\sigma(F^2)] = 0.043 \\ wR(F^2) = 0.111 \end{array}$ H atoms treated by a mixture of independent and constrained S = 1.01refinement $\Delta \rho_{\rm max} = 0.14$ e Å⁻³ 3053 reflections $\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$ 212 parameters 2 restraints

Table 1 Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ O1-H1A···O2 0.863 (10) 1.756 (14) 2.562 (2) 155 (2) $O2-H2A\cdots O1^{i}$ 0.856 (10) 1.944 (10) 2.7998 (19) 177 (2)

Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$

 $0.30 \times 0.26 \times 0.20$ mm

8635 measured reflections 3053 independent reflections

1914 reflections with $I > 2\sigma(I)$

T = 294 (2) K

 $R_{\rm int}=0.042$

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We thank the National Natural Science Foundation of China for financial support of this work (50673094). We also thank Dr R. J. Butcher for his helpful and valuable comments and suggestions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2060).

References

- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Yamaguchi, S., Xu, C. & Tamao, K. (2003). J. Am. Chem. Soc. 125, 13662-13663.

supplementary materials

Acta Cryst. (2007). E63, o4200 [doi:10.1107/S1600536807042250]

(Z)-2,5-Dimethyl-3,4-diphenylhex-3-ene-2,5-diol

S.-H. Li and C.-H. Xu

Comment

As part of our investigations of new intramolecular reductive cyclization (Yamaguchi *et al.* 2003), the title molecule (I), $C_{20}H_{24}O_2$, has been synthesized and structurally characterized (Fig.1. The molecule has a *Z* configuration with respect with the C=C bond; the phenyl groups protrude on the same side of the C=C bond. In the crystal structure (Fig. 2), the molecules are linked by intra- and inter-molecular O—H···O hydrogen bonds.

Experimental

To prove the intermediate species in the reductive reaction of diphenylacetylene under experimental condition, the title molecule was obtained according to the following procedure. A mixture of granular lithium (27.3 mg, 3.9 mmol) and naph-thalene (504.2 mg, 3.9 mmol) in THF was stirred at room temperature for 4 h. To the resulting solution of lithium naph-thalenide was added a solution of diphenylacetylene (300.0 mg, 1.7 mmol) in THF. After stirring for 5 min, to the reaction mixture was added dried acetone (excess) and stirred for another 30 min. Then the reaction was quenched with a saturated NH4Cl aqueous solution. The mixture was extracted with diethyl ether, and the organic layer was washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. To the resulted mixture was added hexane, the white precipitate was collected and recrystallized from ethanol to give 260.0 mg of product in 52% yield as a colorless solid.

Refinement

H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.86 (2) \%A, with Uĩso~(H)=1.7U~eq~(O). Other H atoms were positioned geometrically and refined using a riding model with C—H bonds 0.93-0.96\%A and with Uĩso~(H)=1.2U~eq~(C) for aromatic C or Uĩso~(H)=1.5U~eq~(C) for methyl groups.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2. The packing of (I), viewed down the a axis, showing one layer of molecules connected by O—H···O hydrogen bonds (dashed lines). H atoms have been omitted.

(Z)-2,5-Dimethyl-3,4-diphenylhex-3-ene-2,5-diol

Crystal data	
C ₂₀ H ₂₄ O ₂	$F_{000} = 640$
$M_r = 296.39$	$D_{\rm x} = 1.139 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
a = 12.364 (3) Å	Cell parameters from 2045 reflections
b = 16.826 (4) Å	$\theta = 2.4 - 23.9^{\circ}$
c = 8.770 (2) Å	$\mu = 0.07 \text{ mm}^{-1}$
$\beta = 108.682 \ (5)^{\circ}$	T = 294 (2) K
V = 1728.4 (7) Å ³	Platelet, colourless
Z = 4	$0.30 \times 0.26 \times 0.20 \text{ mm}$

Data collection

Bruker SMART 1000 CCD area-detector diffractometer	3053 independent reflections
Radiation source: fine-focus sealed tube	1914 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.042$
T = 294(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -14 \rightarrow 11$
$T_{\min} = 0.979, T_{\max} = 0.986$	$k = -19 \rightarrow 20$
8635 measured reflections	$l = -5 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.111$	$w = 1/[\sigma^2(F_o^2) + (0.0409P)^2 + 0.3594P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
3053 reflections	$\Delta \rho_{max} = 0.14 \text{ e} \text{ Å}^{-3}$
212 parameters	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$

2 restraints Extinction correction: SHELXL97 (Sheldrick, 1997a), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Primary atom site location: structure-invariant direct Extinction coefficient: 0.037 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Ζ	Uiso*/Ueq
01	0.77809 (13)	0.17589 (8)	0.74092 (16)	0.0544 (4)
O2	0.77989 (13)	0.19942 (8)	0.45310 (15)	0.0517 (4)
C1	0.91048 (17)	-0.07738 (11)	0.6473 (2)	0.0487 (5)
H1	0.9597	-0.0482	0.6079	0.058*
C2	0.9351 (2)	-0.15607 (13)	0.6900 (3)	0.0659 (7)
H2	1.0005	-0.1795	0.6796	0.079*
C3	0.8625 (2)	-0.19964 (13)	0.7481 (3)	0.0716 (7)
H3	0.8794	-0.2524	0.7781	0.086*
C4	0.7652 (2)	-0.16549 (13)	0.7616 (3)	0.0642 (7)
H4	0.7157	-0.1952	0.7995	0.077*
C5	0.74132 (18)	-0.08725 (11)	0.7191 (2)	0.0485 (5)
Н5	0.6752	-0.0645	0.7286	0.058*
C6	0.81348 (16)	-0.04124 (10)	0.6621 (2)	0.0356 (5)
C7	0.78709 (15)	0.04481 (10)	0.6162 (2)	0.0321 (4)
C8	0.83953 (16)	0.10249 (10)	0.7584 (2)	0.0379 (5)
С9	0.83320 (19)	0.06978 (12)	0.9172 (2)	0.0544 (6)
H9A	0.8624	0.1086	1.0005	0.082*
H9B	0.8780	0.0221	0.9442	0.082*
H9C	0.7552	0.0580	0.9069	0.082*
C10	0.96388 (18)	0.11861 (13)	0.7733 (3)	0.0605 (6)
H10A	0.9677	0.1421	0.6754	0.091*
H10B	1.0057	0.0695	0.7925	0.091*
H10C	0.9966	0.1543	0.8614	0.091*
C11	0.72791 (15)	0.06071 (10)	0.4617 (2)	0.0321 (4)
C12	0.68450 (16)	-0.00883 (10)	0.3491 (2)	0.0343 (4)
C13	0.74947 (18)	-0.04143 (12)	0.2630 (2)	0.0475 (5)
H13	0.8219	-0.0211	0.2766	0.057*
C14	0.7095 (2)	-0.10337 (13)	0.1572 (2)	0.0582 (6)
H14	0.7546	-0.1241	0.0998	0.070*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C15	0.6033 (2)	-0.13453 (13)	0.1366 (3)	0.0629 (7)
H15	0.5763	-0.1765	0.0656	0.076*
C16	0.5369 (2)	-0.10355 (13)	0.2211 (3)	0.0603 (6)
H16	0.4649	-0.1246	0.2075	0.072*
C17	0.57722 (17)	-0.04096 (11)	0.3267 (2)	0.0454 (5)
H17	0.5317	-0.0202	0.3834	0.054*
C18	0.69315 (17)	0.14181 (10)	0.3770 (2)	0.0394 (5)
C19	0.6856 (2)	0.13876 (12)	0.2005 (2)	0.0632 (7)
H19A	0.6655	0.1903	0.1531	0.095*
H19B	0.6284	0.1009	0.1450	0.095*
H19C	0.7581	0.1231	0.1920	0.095*
C20	0.5791 (2)	0.16815 (13)	0.3915 (3)	0.0691 (7)
H20A	0.5850	0.1716	0.5031	0.104*
H20B	0.5212	0.1302	0.3387	0.104*
H20C	0.5591	0.2193	0.3418	0.104*
H1A	0.781 (2)	0.1982 (14)	0.654 (2)	0.095 (10)*
H2A	0.778 (2)	0.2382 (11)	0.389 (2)	0.089 (9)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0885 (12)	0.0351 (8)	0.0381 (8)	0.0161 (7)	0.0179 (8)	-0.0040 (6)
O2	0.0783 (11)	0.0328 (8)	0.0376 (8)	-0.0157 (7)	0.0097 (7)	0.0031 (6)
C1	0.0482 (13)	0.0397 (12)	0.0561 (13)	0.0041 (10)	0.0140 (10)	-0.0054 (9)
C2	0.0624 (16)	0.0436 (14)	0.0833 (18)	0.0183 (12)	0.0119 (13)	-0.0084 (12)
C3	0.092 (2)	0.0308 (12)	0.0811 (18)	0.0125 (14)	0.0120 (15)	0.0068 (11)
C4	0.0833 (19)	0.0372 (13)	0.0721 (16)	-0.0039 (13)	0.0250 (13)	0.0076 (11)
C5	0.0523 (14)	0.0354 (12)	0.0585 (13)	0.0007 (10)	0.0187 (10)	0.0048 (10)
C6	0.0421 (12)	0.0284 (10)	0.0335 (10)	0.0031 (9)	0.0080 (8)	-0.0027 (8)
C7	0.0363 (11)	0.0285 (10)	0.0343 (10)	0.0006 (8)	0.0153 (8)	-0.0025 (8)
C8	0.0503 (13)	0.0295 (10)	0.0339 (10)	0.0023 (9)	0.0134 (9)	-0.0025 (8)
C9	0.0783 (16)	0.0498 (13)	0.0338 (11)	0.0005 (11)	0.0160 (10)	-0.0031 (9)
C10	0.0582 (15)	0.0595 (15)	0.0620 (15)	-0.0184 (12)	0.0168 (11)	-0.0193 (11)
C11	0.0353 (11)	0.0281 (10)	0.0353 (10)	-0.0003 (8)	0.0149 (8)	-0.0021 (8)
C12	0.0417 (12)	0.0290 (10)	0.0319 (10)	0.0003 (9)	0.0113 (8)	0.0004 (8)
C13	0.0461 (13)	0.0484 (12)	0.0486 (12)	-0.0020 (10)	0.0158 (10)	-0.0111 (10)
C14	0.0676 (16)	0.0549 (14)	0.0514 (13)	0.0043 (13)	0.0183 (11)	-0.0187 (11)
C15	0.0778 (18)	0.0470 (14)	0.0538 (14)	-0.0081 (13)	0.0068 (12)	-0.0203 (11)
C16	0.0568 (15)	0.0542 (14)	0.0644 (15)	-0.0190 (12)	0.0116 (12)	-0.0104 (12)
C17	0.0457 (13)	0.0425 (12)	0.0490 (12)	-0.0054 (10)	0.0166 (10)	-0.0055 (9)
C18	0.0509 (13)	0.0288 (10)	0.0355 (10)	-0.0050 (9)	0.0096 (9)	0.0014 (8)
C19	0.1003 (19)	0.0448 (13)	0.0359 (12)	-0.0130 (13)	0.0096 (12)	0.0031 (9)
C20	0.0644 (17)	0.0423 (13)	0.1009 (19)	0.0165 (12)	0.0270 (14)	0.0149 (12)

Geometric parameters (Å, °)

O1—C8	1.432 (2)	C10—H10B	0.9600
O1—H1A	0.863 (10)	C10—H10C	0.9600
O2—C18	1.441 (2)	C11—C12	1.514 (2)

O2—H2A	0.856 (10)	C11—C18	1.547 (2)
C1—C2	1.383 (3)	C12—C13	1.381 (3)
C1—C6	1.388 (3)	C12—C17	1.387 (3)
C1—H1	0.9300	C13—C14	1.377 (3)
C2—C3	1.377 (3)	С13—Н13	0.9300
С2—Н2	0.9300	C14—C15	1.371 (3)
C3—C4	1.372 (3)	C14—H14	0.9300
С3—Н3	0.9300	C15—C16	1.373 (3)
C4—C5	1.375 (3)	C15—H15	0.9300
C4—H4	0.9300	C16—C17	1.386 (3)
C5—C6	1.389 (3)	С16—Н16	0.9300
С5—Н5	0.9300	С17—Н17	0.9300
C6—C7	1.510 (2)	C18—C19	1.521 (3)
C7—C11	1.345 (2)	C18—C20	1.522 (3)
С7—С8	1.549 (2)	C19—H19A	0.9600
C8—C9	1.522 (3)	C19—H19B	0.9600
C8—C10	1.525 (3)	С19—Н19С	0.9600
С9—Н9А	0.9600	C20—H20A	0.9600
С9—Н9В	0.9600	С20—Н20В	0.9600
С9—Н9С	0.9600	C20—H20C	0.9600
C10—H10A	0.9600		
C8—O1—H1A	107.3 (18)	H10B-C10-H10C	109.5
C18—O2—H2A	110.1 (17)	C7—C11—C12	117.92 (15)
C2—C1—C6	121.1 (2)	C7—C11—C18	129.59 (15)
C2—C1—H1	119.5	C12—C11—C18	112.48 (14)
С6—С1—Н1	119.5	C13—C12—C17	117.73 (17)
C3—C2—C1	119.8 (2)	C13—C12—C11	121.14 (17)
С3—С2—Н2	120.1	C17—C12—C11	121.12 (16)
С1—С2—Н2	120.1	C14—C13—C12	121.5 (2)
C4—C3—C2	120.2 (2)	C14—C13—H13	119.2
С4—С3—Н3	119.9	С12—С13—Н13	119.2
С2—С3—Н3	119.9	C15-C14-C13	120.0 (2)
C3—C4—C5	119.7 (2)	C15—C14—H14	120.0
C3—C4—H4	120.1	C13—C14—H14	120.0
C5—C4—H4	120.1	C14—C15—C16	119.8 (2)
C4—C5—C6	121.6 (2)	C14—C15—H15	120.1
C4—C5—H5	119.2	C16—C15—H15	120.1
С6—С5—Н5	119.2	C15—C16—C17	120.0 (2)
C1—C6—C5	117.60 (18)	C15-C16-H16	120.0
C1—C6—C7	120.97 (18)	C17—C16—H16	120.0
C5—C6—C7	121.42 (17)	C16—C17—C12	120.9 (2)
C11—C7—C6	117.43 (15)	C16—C17—H17	119.5
C11—C7—C8	129.71 (15)	C12—C17—H17	119.5
C6—C7—C8	112.79 (14)	O2—C18—C19	106.75 (15)
01—C8—C9	103.22 (14)	O2—C18—C20	109.71 (16)
O1—C8—C10	109.96 (16)	C19—C18—C20	109.76 (17)
C9—C8—C10	109.36 (16)	O2—C18—C11	108.64 (14)
01—C8—C7	112.54 (14)	C19—C18—C11	112.09 (15)
C9—C8—C7	112.26 (15)	C20-C18-C11	109.81 (16)

supplementary materials

C10-C8-C7	109.33 (15)	С18—С19—Н19А	109.5
С8—С9—Н9А	109.5	C18—C19—H19B	109.5
С8—С9—Н9В	109.5	H19A—C19—H19B	109.5
Н9А—С9—Н9В	109.5	С18—С19—Н19С	109.5
С8—С9—Н9С	109.5	H19A—C19—H19C	109.5
Н9А—С9—Н9С	109.5	H19B—C19—H19C	109.5
Н9В—С9—Н9С	109.5	C18—C20—H20A	109.5
C8—C10—H10A	109.5	C18—C20—H20B	109.5
C8—C10—H10B	109.5	H20A—C20—H20B	109.5
H10A-C10-H10B	109.5	C18—C20—H20C	109.5
C8—C10—H10C	109.5	H20A—C20—H20C	109.5
H10A—C10—H10C	109.5	H20B—C20—H20C	109.5
C6—C1—C2—C3	0.1 (3)	C6—C7—C11—C18	-176.79 (17)
C1—C2—C3—C4	0.8 (4)	C8—C7—C11—C18	-0.2 (3)
C2—C3—C4—C5	-0.9 (4)	C7—C11—C12—C13	-90.5 (2)
C3—C4—C5—C6	0.0 (3)	C18—C11—C12—C13	90.8 (2)
C2—C1—C6—C5	-0.9 (3)	C7—C11—C12—C17	90.8 (2)
C2—C1—C6—C7	179.66 (18)	C18—C11—C12—C17	-88.0 (2)
C4—C5—C6—C1	0.9 (3)	C17—C12—C13—C14	0.4 (3)
C4—C5—C6—C7	-179.71 (18)	C11—C12—C13—C14	-178.34 (18)
C1—C6—C7—C11	87.2 (2)	C12—C13—C14—C15	-0.5 (3)
C5—C6—C7—C11	-92.1 (2)	C13-C14-C15-C16	0.3 (3)
C1—C6—C7—C8	-90.0 (2)	C14-C15-C16-C17	0.1 (3)
C5—C6—C7—C8	90.7 (2)	C15—C16—C17—C12	-0.2 (3)
C11—C7—C8—O1	28.7 (3)	C13—C12—C17—C16	-0.1 (3)
C6—C7—C8—O1	-154.52 (16)	C11—C12—C17—C16	178.68 (18)
C11—C7—C8—C9	144.7 (2)	C7—C11—C18—O2	31.8 (3)
C6—C7—C8—C9	-38.6 (2)	C12—C11—C18—O2	-149.64 (15)
C11—C7—C8—C10	-93.8 (2)	C7-C11-C18-C19	149.5 (2)
C6—C7—C8—C10	82.98 (19)	C12-C11-C18-C19	-31.9 (2)
C6—C7—C11—C12	4.7 (2)	C7—C11—C18—C20	-88.2 (2)
C8—C7—C11—C12	-178.68 (17)	C12-C11-C18-C20	90.37 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
O1—H1A…O2	0.863 (10)	1.756 (14)	2.562 (2)	155 (2)
O2—H2A····O1 ⁱ	0.856 (10)	1.944 (10)	2.7998 (19)	177 (2)
Symmetry codes: (i) x , $-y+1/2$, $z-1/2$.				

